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Abstract 

Background:  The interplay among the plant-based dietary pattern, gut microbiota, and cardiometabolic health is 
still unclear, and evidence from large prospective cohorts is rare. We aimed to examine the association of long-term 
and short-term plant-based dietary patterns with gut microbiota and to assess the prospective association of the 
identified microbial features with cardiometabolic biomarkers.

Methods:  Using a population-based prospective cohort study: the China Health and Nutrition Survey, we included 
3096 participants from 15 provinces/megacities across China. We created an overall plant-based diet index (PDI), 
a healthful plant-based diet index (hPDI), and an unhealthful plant-based diet index (uPDI). The average PDIs were 
calculated using repeat food frequency questionnaires collected in 2011 and 2015 to represent a long-term dietary 
pattern. Short-term dietary pattern was estimated using 3-day 24-h dietary recalls collected in 2015. Fecal samples 
were collected in 2015 and measured using 16S rRNA sequencing. We investigated the association of long-term and 
short-term plant-based dietary patterns with gut microbial diversity, taxonomies, and functional pathways using 
linear mixed models. Furthermore, we assessed the prospective associations between the identified gut microbiome 
signatures and cardiometabolic biomarkers (measured in 2018) using linear regression.

Results:  We found a significant association of short-term hPDI with microbial alpha-diversity. Both long-term and 
short-term plant-based diet indices were correlated with microbial overall structure, whereas long-term estimates 
explained more variance. Long-term and short-term PDIs were differently associated with microbial taxonomic 
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Background
With the recent advocate of the planetary health diet, 
plant-based dietary pattern has attracted more and 
more attention from both scientific community and the 
public, given that it shows beneficial effects not only for 
human health but also for the environmental sustain-
ability [1, 2]. Prior epidemiological evidence suggests 
that plant-based foods are associated with lower risk 
of cardiometabolic diseases, such as type 2 diabetes 
[3], cardiovascular disease, and obesity [4], while red 
meat is associated with higher risk of cardiometabolic 
diseases [5]. Plant protein, replacing animal protein, 
in the substitution model, is associated with a lower 
risk of cardiovascular mortality [6]. Recommendations 
for higher intake of plant foods, such as whole grains, 
fruits, vegetables, legumes, seeds, and nuts, are widely 
integrated into different dietary guidelines globally [7]. 
Gut microbiota provides a key connection between diet 
and metabolic health [8]. Although it is reasonable to 
postulate that plant-based dietary pattern may influ-
ence the gut microbiota profiles, evidence from a large 
longitudinal cohort is still rare. Identification of key 
gut microbiota signatures of the plant-based dietary 
pattern may help reveal novel mechanistic insight into 
the preventive role of plant foods for cardiometabolic 
diseases.

Previous literature linking diet and gut microbiota 
mainly relies on food frequency questionnaire (FFQ), 
which evaluates the long-term habitual dietary intake 
[8, 9]. There are few large-scale human cohorts using 
multiple 24-h dietary recalls investigating the associa-
tion of relatively short-term diet intake with gut micro-
biota profiles. A combination of FFQ and 24-h dietary 
recalls may help comprehensively characterize long-term 
and short-term dietary intake, which is important for 
the understanding of the interplay between diet and gut 
microbiota. Moreover, longitudinal cohort linking plant-
based (long-term or short-term) diet-related microbiota 
features with future cardiometabolic risk factors has been 
rare, although there have been some reports from cross-
sectional studies [8, 10].

Therefore, in the present study, we aimed to examine 
the associations of long-term habitual plant-based die-
tary pattern repeatedly assessed over 4  years, with gut 
microbiota profiles in a population-based prospective 
cohort study in China. As a comparison, we also inves-
tigated the association of short-term plant-based dietary 
pattern, estimated using 3-day 24-h dietary recalls, with 
gut microbiota profiles in the same cohort. We further 
examined the longitudinal associations of the identified 
plant-based dietary pattern-related gut microbial features 
with the cardiometabolic risk factors measured after a 
3-year follow-up (Fig. 1).

Methods
Populations and study design
Our present study was based on data from the China 
Health and Nutrition Survey (CHNS). The CHNS is an 
ongoing, prospective, household-based cohort survey 
of 11 rounds (1989–2018). The identical multistage, 
stratified, random cluster sampling scheme was used to 
draw samples from 12 provinces and three megacities 
that vary in demography, geography, economic activ-
ity, and public resources, as previously described [11]. 
The CHNS protocol was approved by the Institutional 
Review Boards of the Chinese Center for Disease Con-
trol and Prevention (No. 201524), University of North 
Carolina at Chapel Hill and the National Institute for 
Nutrition and Health (No. 07–1963). All participants 
signed written informed consent forms. This study fol-
lowed the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) reporting guideline 
for cohort studies [12].

In the present study, 3249 stool samples collected in 
2015 were selected for 16S rRNA sequencing. To exam-
ine the relationship between the long-term plant-based 
dietary pattern and gut microbiome, we included 3096 
adult participants in the statistical analysis, after exclud-
ing participants without FFQ information during 2011 
and 2015 (n = 15), participants who had gastrointestinal 
diseases (Crohn disease, ulcerative colitis, irritable bowel 
syndrome, n = 26), or those who had used antibiotics 

composition, yet only microbes related to long-term estimates showed association with future cardiometabolic 
biomarkers. Higher long-term PDI was associated with the lower relative abundance of Peptostreptococcus, while this 
microbe was positively correlated with the high-sensitivity C-reactive protein and inversely associated with high-
density lipoprotein cholesterol.

Conclusions:  We found shared and distinct gut microbial signatures of long-term and short-term plant-based die‑
tary patterns. The identified microbial genera may provide insights into the protective role of long-term plant-based 
dietary pattern for cardiometabolic health, and replication in large independent cohorts is needed.

Keywords:  Plant-based dietary pattern, Gut microbiota, Prospective cohort, Cardiometabolic health, Food frequency 
questionnaire, 3-day 24-h dietary recalls
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less than 3 months before the stool collection (n = 112). 
To link short-term plant-based dietary pattern with gut 
microbiome, we included 3066 participants who com-
pleted 3-day 24-h dietary recalls during stool sample col-
lection in the current analysis.

Dietary assessment and covariate collection
Dietary data were collected using both FFQs and three 
consecutive 24-h dietary recalls in each survey year. 
In 2011 and 2015, we repeatedly used FFQ to collect 
participants’ habitual diet information during the past 
12  months. The FFQ consisted of 74 food items in 
2011 and 63 food items in 2015. For each food item, 

participants were asked to estimate their food con-
sumption frequency and amount with the help of a 
trained interviewer. The participants also completed 
24-h dietary recalls on three consecutive days, includ-
ing two weekdays and one weekend day. Additionally, 
the individual consumption of oil and condiment was 
calculated using a household weighing method.

We collected detailed demographic, medical, and life-
style data via standard questionnaires. Total physical 
activity was estimated from self-reported 7-day recalls 
of occupational, transportation, domestic, and leisure 
activities. The urbanization index was calculated based 
on community-level physical, social, cultural, and eco-
nomic environments [13].

Fig. 1  Overview of the study and analysis workflow. This study profiled the gut microbiome of 3096 participants from the China Health and 
Nutrition Survey (CHNS) via 16S rRNA sequencing. The CHNS has repeatedly collected dietary information using 24-h dietary recalls for three 
consecutive days and validated food frequency questionnaires (FFQs) in 2011 and 2015. We associated gut microbial diversity, taxonomies, 
and pathways with long-term plant-based dietary pattern and short-term plant-based dietary pattern, respectively. We further investigated the 
prospective associations between the identified gut microbiome signatures and cardiometabolic biomarkers assessed in 2018. We compared the 
results obtained from long-term plant-based dietary pattern and short-term plant-based dietary pattern
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Plant‑based diet indices
We calculated an overall plant-based diet index (PDI), 
a healthful plant-based diet index (hPDI), and an 
unhealthful plant-based diet index (uPDI) based on 15 
food groups [14]. Healthy plant food groups included 
whole grains, fruits, vegetables, nuts, legumes, vegetable 
oils, and potatoes, while less healthy plant food groups 
included refined grains, beverages and fruit juices, and 
sweets and desserts. Animal food groups included eggs, 
meat, animal oils, dairy, and fish or seafood. The 15 food 
groups were created and classified based on the Chinese 
Food Composition Table 2002 [15] and the Chinese Die-
tary Guideline 2016. The details of food items constitut-
ing the 15 food groups were shown in Additional file  1 
Table S1. We classified potatoes into healthy plant foods, 
as many Chinese would consume potatoes as a replace-
ment of refined grains in a non-fried manner (steam or 
stew with meat and other vegetables). Compared with 
isocaloric refined grains, non-fried potato consumption 
was associated with better diet quality [16]. Carbohy-
drate intake from vegetables (including potatoes) is rec-
ommended over that from refined grains according to 
the Chinese Dietary Guideline 2016. We did not include 
tea or coffee for the indices’ creation, as these data were 
not available for the 3-day 24-h recalls. We, therefore, 
adjusted for the habitual tea and coffee consumption in 
the statistical models.

All food groups were divided into quintiles. The range 
of each food group by quintiles was provided in Addi-
tional file 1 Table S2. For the PDI, plant food groups were 
assigned by ascending values (1 to 5) based on the intake 
quintiles, whereas animal food groups were assigned by 
descending values (5 to 1). PDI was the sum of these val-
ues, ranging from 15 (lowest possible score) to 75 (high-
est possible score), and a higher score represented more 
plant foods consumed. For the hPDI, ascending values 
were given to healthy plant food groups and descending 
values to less healthy plant food groups and animal food 
groups. For the uPDI, ascending values were applied to 
less healthy plant food groups and descending values to 
healthy plant food groups and animal food groups. We 
calculated average values of the PDIs using FFQ data col-
lected in 2011 and 2015 to reflect the long-term plant-
based dietary pattern. Short-term plant-based dietary 
pattern was estimated using 3-day 24-h dietary recalls 
during fecal sample collection in 2015. We considered all 
three indices (PDI, hPDI, uPDI, in quintiles) as the main 
exposure variables.

Gut microbiota profiling
Details on stool sample collection, microbial DNA 
extraction, and paired-end 16S rRNA gene sequenc-
ing were described previously [17]. Briefly, in the 2015 

study visit, stool samples from adult participants aged 
18–80 years were collected. All the participants received 
detailed illustrated instructions describing how to collect 
and store the stool samples. The V4 region of 16S rRNA 
gene was sequenced using the Illumina HiSeq PE-250 
platform (Illumina Inc., USA). Taxonomic and functional 
profiles were generated using QIIME2 (version 2019.10) 
[18]. Pair-end reads were assembled using qiime tools 
import command. Low-quality regions of the sequences, 
marker gene Illumina sequences, and chimeric sequences 
(“consensus”) were filtered using the DADA2 pipeline. 
Reads were then summarized to amplicon sequence 
variants (ASV) in a feature table and annotated using 
the Naïve Bayes classifier trained on the Sliva_132 99% 
OTUs reference databases. Four alpha-diversity indices 
were calculated at the sampling depth of 6000: Shan-
non’s diversity index, observed features, Pielou’s measure 
of species evenness, and Faith’s phylogenetic diversity. 
We performed functional prediction from the ASV table 
using the PICRUSt2 algorithm [19].

Measurement of cardiometabolic risk factors
Fasting blood samples after an overnight fast of at least 
8 h were collected in both study visits of 2015 and 2018. 
Serum glucose was measured using the glucose oxi-
dase phenol 4-aminoantipyrine peroxidase kit (Randox 
Laboratories Ltd, UK). Hemoglobin A1c (HbA1c) was 
measured by high-performance liquid chromatography 
system (HLC-723 G7, Tosoh Co., Japan). Fasting insu-
lin was determined by radioimmunology in a gamma 
counter using an XH-6020 analyzer (North Institute of 
Bio-Tech, China). Serum high-density lipoprotein choles-
terol (HDL-C), low-density lipoprotein cholesterol (LDL-
C), total cholesterol (TC), and triglycerides (TG) were 
measured using the glycerol-phosphate oxidase method 
and polyethylene glycol (PEG)- modified enzyme assay 
(Kyowa Medex Co., Ltd, Japan) on the automatic ana-
lyzer (Hitachi 7600, Hitachi Inc., Japan). High-sensitivity 
C-reactive protein (CRP) was measured by the immuno-
turbidimetric method with commercial reagents (Denka 
Seiken, Japan) on an automatic analyzer (Hitachi 7600, 
Hitachi Inc., Japan).

Statistical methods
Difference in cardiometabolic health biomarkers was 
tested across different quintiles of PDIs using ANOVA. 
We estimated the correlations between the long-term 
and short-term PDIs using the Spearman correlation. 
As a primary analysis, we examined the associations of 
the long-term and short-term PDIs (by quintiles) with 
gut microbial diversity, taxonomies and pathways using 
linear mixed regression. All four alpha-diversity indices 
(Shannon’s diversity index, observed features, Pielou’s 
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measure of species evenness, and Faith’s phylogenetic 
diversity) were standardized to Z-score values before 
statistical analysis. In the linear mixed regression model, 
we included the following covariates: age, sex, body 
mass index (BMI), total energy intake, physical activity, 
education level, current smoking status, current alcohol 
drinking status, habitual tea and coffee consumption, 
urbanization index, sequencing depth, and  sequenc-
ing batch. We further included stool sampling location 
in the linear mixed model to adjust the heterogeneity of 
the gut microbiota composition among the provinces 
or megacities. Given the potential correlations of the 
sequencing data within different sequencing batches 
and sampling locations [20, 21], we included sequenc-
ing batch and sampling location as random effects in the 
linear mixed models. A random intercepts model was 
used with unstructured variance–covariance matrix and 
maximum likelihood methods. Given that prevalent dis-
ease and related medication use were identified as impor-
tant covariates of microbiome-related association studies 
[22], we also conducted a sensitivity analysis with addi-
tional adjustment for prevalent hypertension, hyperten-
sion medicine use, prevalent type 2 diabetes, and related 
medicine use. We calculated the Bray–Curtis dissimilar-
ity metrics for each sample using taxonomic data at ASV 
level. We then performed permutational multivariate 
analysis of variance (PERMANOVA) to assess the asso-
ciations between the PDIs and overall microbial struc-
ture and quantify the percentage of variance in microbial 
composition explained by each PDI. The above multivari-
able model was adjusted for age, sex, BMI, total energy 
intake, physical activity, education level, current smok-
ing status, current alcohol drinking status, habitual tea 
and coffee consumption, urbanization index, sequencing 
depth, sequencing batch, and sampling location.

For taxonomic and functional features, we first filtered 
out all ASVs, genera, phylum, and pathways with a mean 
relative abundance of < 0.01% and a prevalence of < 10%. 
In order to account for the non-normal distribution of 
the microbiome data, we transformed relative abun-
dances of the microbial features that met the inclusion 
criteria using rank-based inverse normal transformation 
before further analysis. At the phylum level, we focused 
on Bacteroidetes, Firmicutes, and Bacteroidetes to Firmi-
cutes ratio, as available evidence suggested that these two 
phyla and their ratio were substantially affected by plant-
based diet [23]. We used linear mixed models to examine 
the associations between PDIs and microbial taxonomies 
and functional pathways, adjusted for age, sex, BMI, total 
energy intake, physical activity, education level, current 
smoking status, current alcohol drinking status, habitual 
tea and coffee consumption, urbanization index (fixed 
effects), and sampling location (random effect). Multiple 

comparisons were controlled by false discovery rate 
(FDR, q < 0.25). We also explored another FDR thresh-
old of 0.15 to test the robustness of our findings. Subse-
quently, we analyzed the associations with gut microbial 
diversity, taxonomies, and pathways for each food group 
intake with a linear mixed model adjusted for the same 
covariates as the above PDIs.

We then quantified the prospective associations of the 
identified microbial signatures with cardiometabolic risk 
biomarkers after a 3-year follow-up (in 2018) using linear 
regression models. We included eight cardiometabolic 
risk biomarkers (fasting glucose, HbA1c, insulin, HDL-C, 
LDL-C, TC, TG, and CRP). The above linear regression 
models were adjusted for age, sex, BMI, and correspond-
ing cardiometabolic risk biomarkers measured in 2015. 
Significant association for each cardiometabolic bio-
marker was expressed as the difference in standard 
deviation  (SD) and reported at q < 0.25 level. The statis-
tical analyses were performed using Stata 15 (StataCorp, 
Texas, USA) or R (version 3.6.3).

Results
Population characteristics
In 2015, the mean (± SD) PDI were 45 ± 5 and 46 ± 6 
for long-term diet and short-term diet, respectively. 
Participants with a higher long-term or short-term PDI 
score were less likely to be smokers or alcohol drinkers 
(Table  1). The food components of the plant diet index 
were correlated with each other at weak to moderate 
magnitudes (Spearman correlation coefficient ranging 
from − 0.33 to 0.50).

The mean levels (± SD) of fasting blood glucose, 
Hb1Ac, insulin, HDL-C, LDL-C, TC, TG, and CRP were 
5.54 ± 1.55  mmol/L, 5.74 ± 0.98%, 7.85 ± 7.76 μU/mL, 
1.27 ± 0.33 mmol/L, 3.20 ± 0.91 mmol/L, 4.98 ± 1.01 mmol/L, 
1.58 ± 1.19  mmol/L, 1.86 ± 3.65  mg/L, respectively. Partici-
pants who had a higher long-term PDI had lower LDL-C and 
TC. Similar trend was observed for short-term PDI (Table 1).

Long-term PDIs and all 15 constituent food groups 
were significantly correlated with corresponding short-
term estimates (p < 0.05, Fig. 2A). The correlation coeffi-
cients were 0.26, 0.28, and 0.22 for PDI, hPDI, and uPDI, 
respectively (Fig. 2A). Among 15 food groups, animal oils 
(r = 0.50), meat (r = 0.37), eggs (r = 0.36), and fish or sea-
food (r = 0.36) showed strongest correlations, whereas 
beverages and fruit juices (r = 0.08), nuts (r = 0.09), and 
legumes (r = 0.09) showed the weakest correlations.

Plant‑based diet and gut microbiome
Higher short-term hPDI was associated with higher 
Shannon’s diversity index and Pielou’s measure of species 
evenness (Fig.  2B). However, no statistically significant 
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Table 1  Characteristics of participants during stool sample collection by quintiles of plant-based diet indexa

Abbreviations: BMI Body mass index, CRP High-sensitivity C-reactive protein, HDL-C High-density lipoprotein cholesterol, hPDI Healthy plant-based diet index, LDL-C Low-density 
lipoprotein cholesterol, PDI Plant-based diet index, Q Quintile, TC Total cholesterol, TG Total triglycerides, SD Standard deviation, uPDI unhealthy plant-based diet index
a Data are presented as mean (SD) for continuous measures, and n (%) for categorical measures. Plant-based dietary index, dietary intakes and total energy presented 
were calculated based on the FFQs, and 3-day 24-h dietary recalls for long-term diet and short-term diet, respectively. Dietary intake for each food group was adjusted 
for total energy intake using the residual method
b Urbanization index, a 12-component scale based on community-level physical, social, cultural, and economic environments, was categorized as low (≤ 63), middle 
(63–84.3), and high (> 84.3) levels of urbanization
c Current tea and coffee drinking status were estimated based on the FFQ information

Long-term PDI (N = 3096) Short-term PDI (N = 3066)

Q1 (N = 737) Q3 (N = 506) Q5 (N = 596) Q1 (N = 638) Q3 (N = 665) Q5 (N = 520)

Age (year) 52.0 (11.4) 52.1 (13.1) 50.5 (13.1) 50.3 (11.6) 51.0 (12.2) 53.9 (13.1)

Sex, % of women 329 (45%) 267 (53%) 353 (59%) 231 (36%) 357 (54%) 334 (64%)

BMI (kg/m2) 23.9 (3.5) 24.2 (3.5) 24.5 (3.7) 23.9 (3.4) 23.8 (3.5) 24.6 (3.7)

Education level

  Middle school or lower 506 (69%) 328 (65%) 398 (67%) 384 (60%) 423 (64%) 383 (74%)

  High school or professional college 151 (20%) 112 (22%) 122 (20%) 172 (27%) 150 (23%) 89 (17%)

  University 80 (11%) 66 (13%) 76 (13%) 82 (13%) 92 (14%) 48 ( 9%)

Current smoking 256 (35%) 116 (23%) 149 (25%) 245 (38%) 175 (26%) 101 (19%)

Current alcohol drinking 251 (34%) 128 (25%) 161 (27%) 249 (39%) 182 (27%) 111 (21%)

Physical activity (MET•hours/week) 152.3 (155.0) 136.3 (135.0) 156.7 (158.3) 148.7 (145.6) 149.0 (159.2) 141.1 (142.6)

Total energy intake (kcal/day) 2186 (1190) 2183 (3475) 2174 (2441) 2585 (611) 1906 (533) 1404 (454)

Urbanizationb

  Low 243 (33%) 156 (31%) 238 (40%) 170 (27%) 217 (33%) 245 (47%)

  Middle 256 (35%) 183 (36%) 186 (31%) 241 (38%) 216 (32%) 140 (27%)

  High 238 (32%) 167 (33%) 172 (29%) 227 (36%) 232 (35%) 135 (26%)

Prevalent hypertension 86 (12%) 77 (15%) 93 (16%) 74 (12%) 82 (12%) 97 (19%)

Hypertension medicine use 69 (9%) 65 (13%) 76 (13%) 61 (10%) 69 (10%) 77 (15%)

Prevalent type 2 diabetes 78 (11%) 67 (13%) 67 (11%) 73 (11%) 73 (11%) 66 (13%)

Type 2 diabetes medicine use 14 (2%) 18 (4%) 14 (2%) 13 (2%) 16 (2%) 15 (3%)

Fasting glucose (mmol/L) 5.6 (1.6) 5.6 (1.8) 5.4 (1.3) 5.6 (1.8) 5.5 (1.4) 5.4 (1.4)

HbA1c (%) 5.7 (1.0) 5.8 (1.1) 5.7 (0.9) 5.8 (1.1) 5.7 (0.8) 5.8 (1.0)

Fasting insulin (μU/mL) 7.8 (7.8) 7.7 (6.9) 7.5 (6.5) 7.9 (8.8) 7.8 (7.9) 7.8 (6.9)

HDL-C (mmol/L) 1.3 (0.3) 1.3 (0.4) 1.3 (0.3) 1.3 (0.3) 1.3 (0.3) 1.3 (0.3)

LDL-C (mmol/L) 3.3 (0.9) 3.2 (0.9) 3.0 (0.9) 3.3 (1.0) 3.2 (0.9) 3.1 (0.9)

TC (mmol/L) 5.1 (1.0) 5.0 (1.1) 4.7 (1.0) 5.1 (1.1) 4.9 (1.0) 4.8 (1.0)

TG (mmol/L) 1.6 (1.2) 1.6 (1.2) 1.5 (1.0) 1.7 (1.2) 1.6 (1.0) 1.5 (1.1)

CRP (mg/L) 1.8 (3.5) 2.1 (3.7) 1.6 (3.0) 1.9 (3.6) 1.7 (2.7) 2.1 (4.2)

Current tea drinkingc 343 (47%) 239 (47%) 238 (40%) 331 (52%) 308 (46%) 182 (35%)

Current coffee drinkingc 55 (7%) 20 (4%) 65 (11%) 66 (10%) 59 ( 9%) 23 ( 4%)

hPDI 40.4 (5.0) 45.1 (5.0) 50.4 (4.7) 41.3 (4.1) 45.2 (4.2) 48.6 (3.7)

uPDI 47.1 (7.3) 44.7 (7.7) 43.3 (6.9) 46.0 (6.4) 44.6 (5.4) 44.8 (3.9)

Whole grains, servings/day 0.2 (0.7) 0.3 (1.0) 0.4 (0.6) 0.3 (0.9) 0.5 (0.9) 0.6 (1.1)

Fruits, servings/day 0.6 (0.6) 1.1 (1.3) 1.4 (1.2) 0.3 (0.6) 0.4 (0.7) 0.5 (0.7)

Vegetables, servings/day 2.6 (2.0) 3.0 (2.2) 3.5 (4.0) 2.7 (1.3) 2.8 (1.4) 3.3 (1.6)

Nuts, servings/day 0.5 (1.1) 0.9 (1.4) 1.4 (1.9) 3.1 (10.3) 3.7 (11.0) 3.4 (10.4)

Legumes, servings/day 0.9 (1.8) 1.1 (0.9) 1.8 (7.4) 0.6 (0.9) 0.6 (0.9) 0.9 (1.0)

Potatoes, servings/day 0.2 (0.3) 0.4 (0.6) 0.7 (0.6) 0.2 (0.4) 0.3 (0.4) 0.5 (0.6)

Vegetable oils, servings/day 2.2 (2.1) 3.0 (2.9) 3.1 (1.9) 1.4 (2.5) 1.8 (2.2) 2.3 (2.5)

Refined grains, servings/day 7.0 (2.3) 6.8 (4.5) 6.3 (2.3) 6.9 (2.7) 7.2 (2.9) 8.6 (3.0)

Beverages and fruit juices, servings/day 0.4 (1.2) 0.8 (1.9) 1.5 (5.9) 0.1 (0.5) 0.2 (2.1) 0.2 (1.4)

Sweets and desserts, servings/day 0.3 (0.5) 0.5 (0.7) 0.7 (0.9) 0.4 (1.7) 0.6 (1.7) 0.5 (1.2)

Dairy, servings/day 0.4 (0.9) 0.4 (0.7) 0.3 (0.7) 0.1 (0.3) 0.1 (0.2) 0.0 (0.1)

Eggs, servings/day 0.7 (0.5) 0.7 (0.6) 0.6 (0.6) 0.7 (0.6) 0.5 (0.5) 0.4 (0.5)

Fish or seafood, servings/day 0.8 (3.3) 0.5 (0.8) 0.4 (0.6) 0.8 (1.2) 0.5 (0.8) 0.2 (0.5)

Meat, servings/day 2.5 (1.6) 1.9 (1.2) 1.3 (0.9) 2.7 (1.6) 2.3 (1.6) 1.3 (1.5)

Animal oils, servings/day 0.8 (1.4) 0.4 (0.7) 0.2 (0.4) 1.0 (2.2) 0.5 (1.2) 0.3 (0.7)
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association was seen between the long-term PDIs and 
microbial alpha-diversity (Fig. 2B). Of the 15 food groups, 
we observed a positive association of short-term intake 
of vegetable oils with Pielou’s measure of species even-
ness and Shannon’s diversity index (Fig.  2C, Additional 
file 1 Table S3). In accordance with a previous study [24], 
a higher long-term intake of whole grains was associated 

with all four alpha-diversity indices (Fig. 2C, Additional 
file 1 Table S4). Interestingly, short-term dairy consump-
tion was inversely associated with Pielou’s measure of 
species evenness and Shannon’s diversity index, whereas 
long-term dairy intake had a positive association with 
observed features and Faith’s phylogenetic diversity 
(Fig.  2C, Additional file  1 Table  S3-S4). Similar results 
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Fig. 2  Associations of the long-term and short-term plant-based dietary patterns with overall gut microbiome configuration. A Long-term 
plant-based dietary pattern and its constituent food groups were correlated with short-term estimates. The red-to-blue gradient in the outer 
blocks represents the magnitude and direction of the Spearman correlation between long-term dietary factors and short-term dietary factors. The 
correlations were displayed with color within blocks when significant (p < 0.05). B Associations of long-term and short-term plant-based dietary 
patterns with bacterial richness and diversity. Beta coefficients were derived from multivariable-adjusted linear mixed models for Q2–Q5 of PDIs 
using Q1 as the reference group. Covariates included age, sex, BMI, total energy intake, physical activity, education, smoking and alcohol drinking 
status, habitual tea and coffee consumption, urbanization index, sampling location (random effect), sequencing depth, and sequencing batch 
(random effect). All four alpha-diversity indices were standardized to Z-score values before statistical analysis. C Associations of plant-based foods 
and animal-based foods with bacterial richness and diversity. Beta coefficients were derived from multivariable-adjusted linear mixed models 
as above for Q5 of each food group using Q1 as the reference group. All four alpha-diversity indices were standardized to Z-score values before 
statistical analysis. Non-significant associations (p > 0.05) have been scored 0 and hence colored white. D Proportion of variation in taxonomy at ASV 
level explained by the long-term and short-term plant-based dietary patterns and as quantified by permutational multivariate analysis of variance 
(based on Bray–Curtis dissimilarity). The p values were calculated by adjusting for the same covariates as above. Faith’s PD, Faith’s phylogenetic 
diversity; hPDI, healthful plant-based diet index; PDI, plant-based diet index; Pielou’s evenness, Pielou’s measure of species evenness; Q, quintile; 
Shannon, Shannon’s diversity index; uPDI, unhealthful plant-based diet index. *** p < 0.001



Page 8 of 15Miao et al. BMC Medicine          (2022) 20:204 

were obtained regardless of further adjustment for preva-
lent hypertension, type 2 diabetes, or related medicine 
use for the above diet-microbial diversity associations 
(Additional file 1 Table S5-S6).

We proceeded to identify the links between a plant-
based diet and the overall microbial structure (beta-
diversity). In multivariable analyses, the association 
between long-term PDIs and microbial beta-diversity (at 
ASV level) was stronger than short-term PDIs (Fig. 2D). 
The strongest association was found between long-term 
PDI and microbial beta-diversity, explaining 0.6% of the 
dissimilarities in the gut microbiota structure (p < 0.001).

We then focused on identifying the specific taxa 
responsible for these diet-microbiota community asso-
ciations. Higher long-term PDI was associated with 
lower relative abundance of Firmicutes (Q5 vs. Q1 
beta =  − 0.15; 95% CI, − 0.26 to -0.03; p < 0.05). At the 
same time, we observed no statistically significant dif-
ferences in Firmicutes across different quintiles of the 
short-term PDI (Fig.  3A). All three indices based on 
long-term diet and short-term diet had nominally sig-
nificant associations with taxonomies at ASV or genus 
level (Q5 vs. Q1 p < 0.05, Fig.  3B). Among 145 genera 
with a mean relative abundance of ≥ 0.01% and a prev-
alence of ≥ 10%, a total of 14 genera were significantly 
associated with at least one dietary indicator (q < 0.25). 
Short-term PDI had one FDR-adjusted significant 
association, and it was four for short-term hPDI, two 
for short-term uPDI, one for long-term PDI, and three 
for long-term uPDI (Q5 vs. Q1 q < 0.25, Fig. 3B, Addi-
tional file 1 Table S7-S8). We did not find any overlap 
between the microbial genera associated with long-
term PDIs and genera associated with correspond-
ing short-term PDIs (Fig. 3C). We observed an inverse 
association between short-term PDI and genus Cateni-
sphaera, and similarly for long-term PDI and genus 
Peptostreptococcus. Short-term hPDI was positively 
associated with Blautia, Polynucleobacter, and Rumi-
nococcaceae UCG-009, while inversely associated with 
Dorea. Higher short-term uPDI was associated with a 
higher relative abundance of ZOR0006, but a lower rel-
ative abundance of Polynucleobacter. Long-term uPDI 
was positively associated with Exiguobacterium and 
F0332, but inversely associated with [Eubacterium] 
xylanophilum group. Under the FDR threshold of 0.15, 
all the four identified taxonomic associations of the 
long-term PDIs were still significant, and three taxo-
nomic associations of the short-term estimates were 
significant (including hPDI-Polynucleobacter, uPDI- 
ZOR0006 and hPDI- Blautia).

In the secondary analyses for specific food groups, we 
identified five significant diet-microbe associations (Q5 
vs. Q1 q < 0.25, Fig.  3C, Additional file  1 Table  S9-S10). 

All those significant associations were related to long-
term dietary intake. We observed an inverse association 
between long-term nut intake and Enterococcaceae spp., 
between long-term legume intake and Exiguobacterium, 
between long-term animal oil consumption and [Eubac-
terium] ruminantium group and Paraeggerthella. We 
found a positive association between long-term refined 
grains intake and Terrisporobacter.

In our functional pathway profiling using PICRUST, we 
did not identify any association of long-term, short-term 
PDIs or their constituent food groups with microbial 
functional pathways (Q5 vs. Q1 q > 0.25, Additional file 1 
Table S11-S14).

Association of gut microbiota with cardiometabolic 
risk factors
After adjusting for potential confounders, we found 
that higher microbial alpha-diversity (Pielou’s meas-
ure of species evenness) were associated with lower TG 
after 3-year follow-up (p < 0.05, Additional file  1 Sup-
plementary Table S15). We also found four gut micro-
bial features (at genus level) of long-term plant diet 
were significantly associated with future fasting car-
diometabolic risk biomarkers, including fasting insulin, 
HDL-C, LDL-C, TG, and CRP (q < 0.25, Fig. 4). Higher 
long-term PDI was associated with the lower relative 
abundance of Peptostreptococcus, while this microbe 
was positively correlated with the inflammatory marker 
(CRP) and inversely associated with HDL-C. Entero-
coccaceae spp., which had an inverse association with 
long-term nut consumption, and was positively asso-
ciated with fasting insulin. Higher relative abundance 
of F0332 was significantly associated with higher CRP 
level. However, gut microbial features (at a genus level) 
related to short-term dietary estimates showed no sig-
nificant association with future cardiometabolic risk 
biomarkers.

Discussion
In the present study, we found that short-term hPDI were 
associated with microbial alpha-diversity, while long-
term PDIs captured more prominent variations in the 
gut microbial communities (beta-diversity). Long-term 
and short-term PDIs were differently associated with gut 
microbial taxonomic composition. Interestingly, only 
microbes associated with long-term dietary estimates 
were favorably associated with future cardiometabolic 
biomarkers. Our results suggested that integrating the 
short-term and long-term dietary data may help bet-
ter understand the diet-microbiome associations and 
suggested the potential utility of long-term plant-based 
dietary pattern to modulate the gut microbiome and 
improve cardiometabolic health.
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Accumulating literature demonstrates the difference 
in gut microbiota composition between individuals 
following vegan or vegetarian diets and those follow-
ing omnivorous diets [23]. The vegetarian diets includ-
ing vegan were associated with greater richness of gut 
microbiota, a greater abundance of Bacteroidetes, and a 

reduced abundance of Firmicutes [25]. Some nutrients 
rich in the plant foods, such as fibers and polyphenols, 
were strongly associated with gut microbiota [23]. Fib-
ers provide the natural sources for fecal short-chain 
fatty acids (SCFA), which could alleviate inflammation 
and show beneficial effects for weight management 

Fig. 3  Distinct gut microbial signatures between long-term and short-term plant-based dietary patterns. A Association of long-term and 
short-term PDI with Firmicutes. Beta values were calculated for Q2-Q5 of the PDI using Q1 as the reference group using linear mixed models. All 
models used sampling location as a random effect and simultaneously adjusted for age, sex, BMI, total energy intake, physical activity, education, 
smoking and alcohol drinking status, habitual tea and coffee consumption, and urbanization index. The p-value for trend was calculated based 
on per quintile difference in the corresponding plant-based diet index. The relative abundance of microbial taxonomy was transformed using 
rank-based inverse normal transformation before analysis. B The number of nominally significant taxonomic associations observed in genus and 
ASV level with long-term and short-term plant-based dietary patterns (Q5 vs. Q1 p<0.05). The bars with stripes represent those significant after 
FDR adjustment (q<0.25). C Associations of long-term and short-term plant-based dietary patterns and its constituent food groups with microbial 
genera with the asterisks denoting significant associations (FDR q < 0.25). Beta coefficients were derived from multivariable-adjusted linear mixed 
models as above for Q5 of each dietary indicator using Q1 as the reference group. The relative abundance of microbial taxonomy was transformed 
using rank-based inverse normal transformation before analysis. Microbial genera with no significant associations are not shown. The number of 
each microbe’s associations with dietary indicators is written within cells when significant. FDR, false discovery rate; hPDI, healthful plant-based diet 
index; PDI, plant-based diet index; Q, quintile; uPDI, unhealthful plant-based diet index. *FDR q < 0.25, ** FDR q < 0.05
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and type 2 diabetes [26]. Polyphenols are enriched in 
fruits, vegetables, and seeds and could increase Bifido-
bacterium and Lactobacillus, thus increasing the SCFA 
production and benefiting human health [27]. How-
ever, the above evidence is mainly derived from cross-
sectional studies using FFQ to capture habitual dietary 
intake or short-term interventions [9, 24, 28, 29]. The 
responses of gut microbiota to dietary changes has not 
been well understood, and many findings are contradic-
tory [28]. Some microbiota are relatively stable over a 
32-week dietary intervention [30], while some can rap-
idly respond to altered diet within 4 days [31].

Therefore, it may be helpful to integrate long-term and 
short-term dietary assessment in the diet-microbiome 
association analysis. First, the FFQ was developed to 
assess long-term habitual intake and is widely used in 
large epidemiological studies with a relatively low cost 
[32]. In comparison, repeated 24-h dietary recalls are 
designed to capture recent dietary intake with relatively 
higher accuracy [33]. These two methods offer oppor-
tunities to integrate long-term and short-term dietary 
intake for a wide range of diet-microbiome association 
studies. Second, studies supported that long-term dietary 

habits exhibited a larger influence on gut community 
composition [29], while short-term dietary changes 
showed slight but significant temporary effects [29, 31].

Our results provided different angles to reveal diet-
microbiome association with the two types of dietary 
data (i.e., short-term and long-term dietary assessment). 
Firstly, we found that only short-term hPDI showed a 
significantly positive association with microbial alpha-
diversity. The inconsistency may result from the dynamic 
changes of gut microbiota diversity over time which 
would be substantially affected by many environmen-
tal factors [34, 35]. This may attenuate the association 
of microbial alpha-diversity with long-term plant-based 
dietary pattern. On the other hand, we provided support 
that short-term plant-based dietary pattern may be suffi-
cient to alter gut microbial diversity [36]. In terms of spe-
cific food groups, we observed contradictory results for 
the association of short-term and long-term dairy intake 
with microbial alpha-diversity. Short-term dairy intake 
was inversely associated with Shannon’s diversity index 
and Pielou’s measure of species evenness (how evenly the 
microbes are distributed), whereas long-term dairy intake 
was positively associated with observed features (how 

Fig. 4  Association of the gut microbial signatures related to plant-based dietary patterns with cardiometabolic biomarkers. The Sankey chart 
on the left shows the significant microbial signatures of long-term and short-term plant-based dietary pattern and its constituent food groups. 
The heatmap in the right shows the association between microbial signatures identified and cardiometabolic biomarkers measured after 3 years. 
Beta coefficients were derived from the linear regression model, adjusted for baseline age, sex, and corresponding cardiometabolic biomarkers 
measured in 2015 and expressed as the difference in cardiometabolic biomarkers (in standard deviation unit). Correction for multiple testing 
(FDR) was applied. CRP, high-sensitivity C-reactive protein; FDR, false discovery rate; HDL-C, high-density lipoprotein cholesterol; hPDI, healthful 
plant-based diet index; LDL-C, low-density lipoprotein cholesterol; PDI, plant-based diet index; Q, quintile; TC, total cholesterol; TG, total triglycerides; 
uPDI, unhealthful plant-based diet index. * FDR q < 0.25, ** FDR q < 0.05
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many different microbes in a sample). In a 3-week short-
term intervention study, dairy consumption was associ-
ated with a decrease in gut microbiota evenness [37]. In 
addition, habitual long-term dairy intake has been shown 
to be positively associated with the richness of gut micro-
biota in another independent cohort [38], consistent with 
our results. Interestingly, we also observed that long-term 
whole grain intake was correlated with all four alpha-
diversity indices and short-term whole grain intake was 
not. It suggests that patterns of diet-microbial diversity 
associations may vary in different food groups, and also 
fluctuation of microbiota (evenness and richness) to diet 
within a period of time (long-term and short-term). Taken 
together, it emphasizes the need to acquire both long-
term and short-term dietary data for better understanding 
of diet-microbiome associations.

Secondly, it was interesting to note that both short-
term and long-term PDIs were significantly associated 
with the overall gut microbiome structure. It justified the 
use of both habitual dietary intake assessment and recent 
dietary intake assessment in the diet-microbiome asso-
ciation analysis. Different variations were explained by 
long-term and short-term estimates. We found that long-
term PDIs were more strongly associated with overall gut 
microbiome structure and the relative abundance of one 
of the major phyla Firmicutes. These results were consist-
ent with several previous studies [23, 39] and indicated 
the stronger impact of a long-term plant-based diet on 
the “core” activity of gut microbiota composition. Nev-
ertheless, as there were small variations captured by the 
long-term PDIs in our study, future long-term interven-
tion studies are needed to validate the above speculation.

We consistently observed positive associations of short-
term hPDI with several bacterial genera contributing to 
carbohydrate fermentation (Table 2). Concordantly, pre-
vious studies had demonstrated that the vegetarian diet 
was associated with the enrichment of pathways related 
to carbohydrate [28, 40]. Higher proportions of these 
bacteria have been implicated in cardiovascular diseases 
through their metabolites such as SCFA [41–43]. Blau-
tia was associated with a healthier eating behavior [44], 
and it could use sucrose and fructose to produce SCFA. 
Increases in Blautia were observed after the adminis-
tration of high-fiber diet in mice [45]. Ruminococcaceae 
UCG-009, within family Ruminococcaceae, could also 
produce SCFA (acetate and butyrate). Polynucleobacter 
is a propionate producer [43], enriched in healthy ath-
letes [46] and potentially compensates for a disorder in 
glycogenolysis [47]. Conversely, we saw a negative asso-
ciation of uPDI with Polynucleobacter and [Eubacterium] 
xylanophilum group, genera known to produce SCFA 
and favorably relate to host lipid and glucose metabolism 
[48–50]. Together, these findings suggest that healthy 

plant foods may play a role to increase SCFA-producing 
bacteria and to promote cardiometabolic health and 
that unhealthy plant foods may have an opposite role. In 
addition, the consistent associations of long-term and 
short-term dietary pattern with SCFA-producing bacte-
ria indicate that integrating the short-term and long-term 
dietary data helps us find more gut microbial signatures 
of plant-based dietary patterns.

Refined grains are major contributors to daily calorie 
intake among Chinese population and high refined grain 
intake has been reported as the leading dietary risk fac-
tor for type 2 diabetes [65]. We observed a positive asso-
ciation of uPDI and refined grains with abundance of 
opportunistic bacterial genera such as F0332 [57–59] and 
Terrisporobacter [62, 63]. Substituting whole grains for 
refined grains for 6 weeks has been linked with decreased 
levels of pro-inflammatory bacteria and SCFA-producing 
bacteria [66].

Plant-dominated diets tend to be accompanied with 
lower intake of animal protein and fat, which may sub-
stantially affect the intestinal environment and gut 
microbiome composition [67, 68]. We observed an 
inverse association of short-term PDI with genera that 
were increased with high-fat diet (Catenisphaera) [51]. 
We also found an inverse association of long-term ani-
mal oil consumption with genera that were decreased 
with high-fat diet ([Eubacterium] ruminantium group) 
[48]. Catenisphaera was associated with higher levels of 
chronic inflammation and related diseases [51–53], while 
the opposite direction was reported for [Eubacterium] 
ruminantium group [48]. The above findings together 
suggest opposite taxonomic associations and health 
effects for plant-based diet compared with high-fat diet.

Our findings suggest the potential of long-term plant-
based dietary pattern for cardiometabolic health promo-
tion through gut microbial metabolism. Long-term PDI 
was inversely associated with Peptostreptococcus, which 
was positively correlated with an inflammatory marker 
(CRP). Some species within Peptostreptococcus could 
metabolize tryptophan (one of the amino acids rich in red 
meat, fish, and eggs) to tryptamine, indolelactic acid, and 
indolepropionic acid [69]. Those microbial tryptophan 
metabolites were linked with inflammatory process both 
in the intestine and in the liver [69, 70]. The genus F0332 
is in the family Actinomycetaceae and positively associated 
with CRP. Actinomycetaceae was found to be abundant in 
the patients with inflammatory clinical phenotypes like 
chronic bacterial infection and asthma [57, 58]. Such shifts 
in the gut microbiota population could potentially activate 
Toll-like receptor signaling pathway and thus increasing 
intestinal permeability and delivery of pro-inflammatory 
cytokines into the host circulation [68]. These findings ten-
tatively imply that long-term plant-based dietary pattern 
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may inhibit the pro-inflammatory properties of specific 
bacteria, thus favoring host cardiometabolic health.

Our study has several limitations. First, the observa-
tional nature of the present study cannot unravel causal-
ity. Even though we adjust for many confounders in our 
statistical analyses, we are unable to assess the potential 
influence of residual confounding. Second, given the spar-
sity of the gut microbiome data and significance level we 
use (FDR q < 0.25), our study warrants replication in an 
independent cohort using different statistical methods or 
a dietary intervention with long-term follow-up. Animal 
studies may also be needed to uncover the mechanism 
behind the identified diet-microbiome associations. Third, 
our analyses are based on genera measured using 16S 
rRNA sequencing, and thus specific bacterial species and 
functional genes can not be investigated. Finally, although 
we use validated questionnaires and standard fecal sam-
pling procedure, the potential measurement error in 
diet and gut microbiome assessment may still be a con-
cern. Despite these limitations, the present study, to our 
knowledge, is the first investigation that exclusively elu-
cidates the association of both long-term and short-term 

plant-based diet with gut microbiota. The use of repeated 
FFQs and 3-day 24-h dietary recalls allows us to compre-
hensively assess the long-term and short-term diet. The 
longitudinal study design also enables us to examine the 
prospective association between diet-related gut micro-
bial features and cardiometabolic health.

Conclusions
An integration of short-term and long-term dietary data 
may help us identify more microbial signatures of plant-
based dietary pattern. The present results reveal how the 
plant-based diet may interact with the gut microbiota 
features, and provide potential mechanistic insight into 
the protective role of long-term plant-based dietary pat-
tern for cardiometabolic health.

Abbreviations
ASV: Amplicon sequence variant; BMI: Body mass index; CHNS: Chinese Health 
and Nutrition Survey; CRP: High-sensitivity C-reactive protein; FDR: False 
discovery rate; FFQ: Food frequency questionnaire; HbA1c: Hemoglobin A1c; 
HDL-C: High-density lipoprotein cholesterol; hPDI: Healthful plant-based diet 
index; LDL-C: Low-density lipoprotein cholesterol; PDI: Plant-based diet index; 

Table 2  Overview of diet-microbiome associations in the present study

a ( +) positive association; ( −) inverse association

Findings in the present study Previous studies

Genus Dietary factorsa Associations with diet and health References

[Eubacterium] ruminantium group Long-term animal oil intake ( −) SCFA-producing bacteria; decrease with an increasing protein/fat 
in diet; negative association with IL-2 and C-reactive protein

[48]

[Eubacterium] xylanophilum group Long-term uPDI ( −) SCFA-producing bacteria; inverse association with liver total tri‑
glycerides; lower in women who developed gestational diabetes

[48–50]

Blautia Short-term hPDI ( +) SCFA-producing bacteria; increased after high-fiber diet; linked 
with healthier eating behavior; negative association with visceral 
fat, Hb1Ac and inflammation

[41, 44, 45]

Catenisphaera Short-term PDI ( −) Increase with high-fat diet; decrease with flavonoids intake; 
enriched in acute coronary syndrome patients; potentially 
contribute to the inflammation; associated with host lipid 
metabolism

[51–53]

Dorea Short-term hPDI ( −) SCFA-producing bacteria; correlated with vegetal protein; higher 
in patients with irritable bowel syndrome

[54, 55]

Enterococcaceae spp. Long-term nuts intake ( −) No related information found

Exiguobacterium Long-term uPDI ( +)
Long-term legumes ( −)

Involved in the starch hydrolysis [56]

F0332 Long-term uPDI ( +) Enriched in children with dental caries; increased abundance in 
bacterial infection and asthma

[57–59]

Paraeggerthella Long-term animal oil intake ( −) Involved in ellagic acid metabolism and help produce anti-
inflammatory metabolite isolecithine-A

[60, 61]

Peptostreptococcus Long-term PDI ( −) Involved in tryptophan metabolism; linked with inflammation

Polynucleobacter Short-term hPDI ( +)
Short-term uPDI ( −)

SCFA-producing bacteria; potentially make up for disorders in 
glycogenolysis; enriched in healthy athletes

[43, 46, 47]

Ruminococcaceae UCG − 009 Short-term hPDI ( +) SCFA-producing bacteria; involved in amino acid metabolism

Terrisporobacter Long-term refined grains intake ( +) Opportunistic pathogen; could degrade carbon sources (e.g., 
glucose, cellobiose, and xylose)

[62, 63]

ZOR0006 Short-term uPDI ( +) Enriched in the fish fed in the paddy field [64]
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PERMANOVA: Permutational multivariate analysis of variance; Q: Quintile; SCFA: 
Short-chain fatty acids; SD: Standard deviation; TC: Total cholesterol; TG: Total 
triglycerides; uPDI: Unhealthful plant-based diet index.
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